DOI: https://doi.org/10.18371/fcaptp.v3i30.179546

ECONOMETRIC MODELS OF MONETARY POLICY EFFECTIVENESS IN UKRAINE

O. I. Baranovskyi, M. O. Kuzheliev, D. M. Zherlitsyn, O. S. Sokyrko, A. V. Nechyporenko

Abstract


The main task for the Central Bank is ensuring the stability of the national currency. For this purpose, it tends to use traditional monetary regulation instruments. There are interest rates regulation, currencies intervention, administrative restriction, money supply adjustment and so on. A significant number of these traditional tools are effective. However, it is very difficult to assess the effectiveness of the regulators influence.

Therefore, the purpose of the work is to define the theoretical substantiation of the basic monetary regulation instruments effectiveness and estimate its influence on the economy growth indicators in Ukraine.

This article is based on the theoretical principles and methods of macroeconomic analysis; the system approach methods to define the main monetary regulation instruments of finance system and economy. The study presents a regression models with paired and multiple variables. For these models R-Studio instruments are the main tools of quality estimation and results interpretation.

The article shows the results of statistical analysis of national currency rate and consumer price index which is based on open data of Ukraine economy trends for the period from 2007 till 2019. Traditionally econometric methods are used to find out long run relationships between basic economy indicators (agriculture and industry outputs, average salary, stock index growth etc.) and both monetary information and regulation instruments.

Authors develop the regressive models of influence of Central Bank regulation instruments of monetary and economic stability. The paper presents conclusions regarding trends and problems in the implementation of Ukraine’s monetary policy, it’s influences on the currency stability and economic growth trends.

Implementation of the proposed measures will increase monetary policy effectiveness and define the directions of the further research in forecasting inflationary and course-forming factors of the development of the national economy and financial system of Ukraine.

The key focus of further research is to define an adequate indicator that determines the real level of inflation, which must evaluate a whole range of factors reducing the real value of money.


Keywords


monetary policy; regulation instrument; econometric model; multiple regression; economic indicator.

Full Text:

PDF

References


Doojav, G. O., & Batmunkh, U. (2018). Monetary and macroprudential policy in a commodity exporting economy: A structural model analysis. Central Bank Review, 18 (3), 107—128. https://doi.org/10.1016/j.cbrev.2018.06.001.

Fernandez-Arias, D., Lopez-Martin, M., Montero-Romero, T., Martinez-Estudillo, F., & Fernandez-Navarro, F. (2018). Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks. Computational Economics, 52 (1), 275—297. https://doi.org/10.1007/s10614-017-9676-6.

Feuerriegel, S., & Gordon, J. (2019). News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions. European Journal of Operational Research, 272 (1), 162—175. https://doi.org/10.1016/j.ejor.2018.05.068-y.

Gali, J., & Gertler, M. (2007). Macroeconomic modeling for monetary policy evaluation. Journal of Economic Perspectives, 21 (4), 25—45.

Heinlein, R., & Krolzig, H. M. (2019). Monetary policy and exchange rates: a balanced two-country cointegrated VAR model approach. Macroeconomic Dynamics, 23 (5), 1838—1874. https://doi.org/10.1017/s1365100517000475.

Jawadi, F. (2019). Introduction to Advanced Statistical Analyses for Computational Economics and Finance. Computational Economics, 54 (1), 1—3. https://doi.org/10.1007/s10614-018-9804.

Kuzheliev, M. O., Zherlitsyn, D. M., & Nechyporenko, A. V. (2019) Bioresources Price Trend and GDP Growth Adjustment. International Journal of Advanced Biotechnology and Research (IJABR), 10, 1, 379—383. Retrieved from https://bipublication.com/files/ijabr2019sp154Mykhailo.pdf.

Kuzheliev, M., Britchenko, I., & Zhytar, M. (2015). Weighted Coefficient Model for Bank Investment Portfolio Optimization. Business and non-profit organizations facing increased competition and growing customers’ demands. Nowy Sącz: Wyższa Szkoła Biznesu — National-Louis University in Nowy Sącz and Fundacja Upowszechniająca Wiedzę i Naukę «Cognitione», 14, 149—162.

Pavlova, T. S., Zarutska, E. P., Levkovich, O. V., & Khmarskyi, V. (2019). Logic of the influence of non-monetary information signals of the USA on the excess return of Ukrainian stock market. Financial and Credit Activity-Problems of Theory and Practice, 1 (28), 179—185. https://doi.org/10.18371/fcaptp.v1i28.161772.

Martin, C., & Milas, C. (2004). Modelling monetary policy: Inflation targeting in practice. Economica, 71 (282), 209—221. https://doi.org/10.1111/j.0013-0427.2004.00366.x.

Yelnikova, Y. (2016). Relationship derivatives financial markets, money and stock markets as a subsystem of financial market. Baltic Journal of Economic Studies, 2 (1), 39—45. https://doi.org/10.30525/2256-0742/2016-2-1-39-45.

Salmeron, R., Garcia, C. B., & Garcia, J. (2018). Variance Inflation Factor and Condition Number in multiple linear regression. Journal of Statistical Computation and Simulation, 88 (12), 2365—2384. https://doi.org/10.1080/00949655.2018.1463376.

Statistical Information. (2019, May 30). State Statistics Service of Ukraine. ukrstat.gov.ua. Retrieved from ukrstat.gov.ua.

Statistics. (2019, May 30). National Bank of Ukraine. bank.gov.ua. Retrieved from https://bank.gov.ua/control/en/publish/article?art_id=67604

Yahoo! Finance. (2019, May 30). finance.yahoo.com. Retrieved from finance.yahoo.com.

World Bank. (2019, May 30). data.worldbank.org. Retrieved from https://data.worldbank.org


GOST Style Citations


Doojav G. O. Monetary and macroprudential policy in a commodity exporting economy: A structural model analysis / G. O. Doojav, U. Batmunkh // Central Bank Review. — 2018. — September. — T. 18. — № 3. — P. 107—128.

Fernandez-Arias D. Financial Soundness Prediction Using a Multi-classification Model: Evidence from Current Financial Crisis in OECD Banks / D. Fernandez-Arias, M. Lopez-Martin, T. Montero-Romero, F. Martinez-Estudillo, F. Fernandez-Navarro // Computational Economics. — 2018. — June. — T. 52. — № 1. — P. 275—297.

Feuerriegel S. News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions / S. Feuerriegel, J. Gordon // European Journal of Operational Research. — 2019. — January. — T. 272. — № 1. — P. 162—175.

Gali J. Macroeconomic modeling for monetary policy evaluation / J. Gali, M. Gertler // Journal of Economic Perspectives. — 2007. — T. 21. — № 4. — P. 25—45.

Heinlein R. Monetary policy and exchange rates: a balanced two-country cointegrated var model approach / R. Heinlein, H. M. Krolzig // Macroeconomic Dynamics. — 2019. — July. — T. 23. — № 5. — P. 1838—1874.

Jawadi F. Introduction to Advanced Statistical Analyses for Computational Economics and Finance / F. Jawadi // Computational Economics. — 2019. — June. — T. 54. — № 1. — P. 1—3.

Kuzheliev M. O. Bioresources Price Trend and GDP Growth Adjustment [Electronic resource] / M. O. Kuzheliev, D. M. Zherlitsyn, A. V. Nechyporenko // International Journal of Advanced Biotechnology and Research (IJABR). — 2019. — Vol. 10. — Special Is. 1. — P. 379—383. — Available at : https://bipublication.com/files/ijabr2019sp154Mykhailo.pdf.

Kuzheliev M. Weighted Coefficient Model for Bank Investment Portfolio Optimization / M. Kuzheliev, I. Britchenko, M. Zhytar // Business and non-profit organizations facing increased competition and growing customers’ demands / Ed. by A. Nalepka, A. Ujwary-Gil. — Nowy Sącz : Wyższa Szkoła Biznesu — National-Louis University in Nowy Sącz and Fundacja Upowszechniająca Wiedzę i Naukę «Cognitione». — 2015. — Vol. 14. — P. 149—162.

Pavlova T. S. Logic of the influence of non-monetary information signals of the usa on the excess return of Ukrainian stock market / T. S. Pavlova, E. P. Zarutska, O. V. Levkovich, V. Khmarskyi // Financial and Credit Activity-Problems of Theory and Practice. — 2019. — T. 1. — № 28. — P. 179—185.

Martin C. Modelling monetary policy: Inflation targeting in practice / C. Martin, C. Milas // Economica. — 2004. — May. — T. 71. — № 282. — P. 209—221.

Yelnikova Y. Relationship derivatives financial markets, money and stock markets as a subsystem of financial market / Y. Yelnikova // Baltic Journal of Economic Studies. — 2016. — T. 2. — № 1. — P. 3945.

Salmeron R. Variance Inflation Factor and Condition Number in multiple linear regression / R. Salmeron, C. B. Garcia, J. Garcia // Journal of Statistical Computation and Simulation. — 2018. — T. 88. — № 12. — P. 2365—2384.

Statistical Information [Electronic recourse] / State Statistics Service of Ukraine. — Available at : ukrstat.gov.ua.

Statistics [Electronic recourse] / National Bank of Ukraine. — Available at : bank.gov.ua/control/en/publish/article?art_id=67604.

Yahoo! Finance [Electronic recourse]. — Available at : finance.yahoo.com.

World bank [Electronic recourse]. — Available at : data.worldbank.org.





Copyright (c) 2019 O. I. Baranovskyi, M. O. Kuzheliev, D. M. Zherlitsyn, O. S. Sokyrko, A. V. Nechyporenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2306-4994, ISSN (on-line) 2310-8770