DOI: https://doi.org/10.18371/fcaptp.v3i26.144281

MACHINE-BUILDING ENTERPRISES FINANCIAL RISKS MINIMIZATION MODELS BUILDING

Yu. E. Kholodna, S. A. Pustovhar, N. L. Morozova, I. V. Pasechnik

Abstract


The article is based on a financial condition indicators system, which assesses the financial risk of the enterprise, and their grouping according to the nature of the impact on the enterprise financial position. The following financial risks groups have been identified: the inappropriate capital structure, inefficient financial activity, liquidity decline, ineffective operating activities, the imbalances in cash flows and ineffective investment activities risks. Each group of indicators is selected by the "center of gravity"one representative method to construct a model for assessing the financial risk in the enterprise level. It is determined that representative indicators in identifying the financial risk in an enterprise level are: coefficient of autonomy, coefficient of turnover of capital, absolute liquidity ratio, return on sales, net cash flow ratio, total return on investment.

At the next stage of constructing a model for enterprise financial risks minimizing using expert method, representative indicators are measured according to their informativity for assessing financial risk at the enterprise. Taking into account the indicators significance, a machine-building enterprises assessment financial risk model was constructed on the basis of the enterprise financial risk level indicators-representatives additive convolution with their significance weight coefficients correction.

The functional dependencies between the indicators are determined given the direct and inverse nature of the link between the indicators that characterize the machine-building enterprises financial risk, using correlation-regression analysis. An optimization model for machine-building enterprises financial risks minimizing was built on the principle of limiting financial risks. Optimizing the model means getting the maximum integral index value of the financial risk neutralization level. To this end, the Kuhn-Tucker theorem is used. As a result of model optimization it was revealed that from the point of view the financial risks at machine-building enterprises level minimizing, the optimum values of financial indicators are: for the coefficient of autonomy — 0.41; for the capital turnover coefficient — 31,0; for the coefficient of absolute liquidity — 0,45; for a profitability ratio of sales — 0,29; for the coefficient of sufficiency of net cash flow — 0,60; for the coefficient of total return on investment — 0,28. The established norms of financial indicators provide financial risk minimization at machine-building enterprises.


Keywords


financial risks; financial risks minimization; neutralization; limitation; financial stability; solvency.

Full Text:

PDF

References


Sait Derzhavnoi sluzhby statystyky Ukrainy [Site of the State Statistics Service of Ukraine]. (n. d.). www.ukrstat.gov.ua. Retrieved from http://www.ukrstat.gov.ua [in Ukrainian].

Pys’menna, T. V. (2015). Teoretychni osnovy upravlinnia finansovymy ryzykamy pidpryiemstva [Theoretical fundamentals of financial risk management of an enterprise]. Ekonomichni nauky — Economics, 28, 100—106 [in Ukrainian].

Poliakova, O. Yu., & Holtiaieva, L. A. (2013). Osnovni zasady formuvannia kompleksu modelei upravlinnia finansovymy ryzykamy pidpryiemstva [Basic principles of formation of a complex of models of management of financial risks of the enterprise]. Biznes-Inform — Business-Inform, 6, 106—110 [in Ukrainian].

Al-Kassar, T. A., & Soileau, J. S. (2014). Financial performance evaluation and bankruptcy prediction (failure). Arab Economic and Business Journal, 9 (2), 147—155.

Fang, F. (2016). A Study of Financial Risks of Listed Manufacturing Companies in China. Journal of Financial Risk Management, 5, 49—53.

Monti, N. E., & Garcia, R. M. (2010). Statistical Analysis to Predict Financial Distress. Journal of Service Science and Management, 3, 53—61.

Wang, X. (2013). Theoretical Analysis of Financial Portfolio Model. iBusiness, 5, 12—19.

Kuzenko, T. B., Sablina, N. V. (2015) Metodychni pidkhody do upravlinnia finansovym potentsialom pidpryiemstva [Methodical Approaches to Management of Financial Potential of an Enterprise]. Aktualni problemy ekonomiky — Current Problems of Economics, 4 (166), 123—131 [in Ukrainian].

Leliuk, S. V. (2014). Metodychnyi pidkhid do orhanizatsii monitorynhu finansovoi bezpeky pidpryiemstv Kharkivskoho rehionu [Methodical Approach to the Organization of Financial Security Monitoring in the Enterprises of the Kharkiv Region]. Naukovyi visnyk Bukovynskoho derzhavnoho finansovo-ekonomichnoho universytetu — Scientific Bulletin of the Bukovinian State Financial-Economic University, 26, 234—241 [in Ukrainian].

Sytnyk, Yo. S. (2017). Metod reitynhovoho otsiniuvannia rezultatyvnosti intelektualizatsii system menedzhmentu [Method of rating evaluation of the effectiveness of intellectualization of management systems]. Ukrainskyi zhurnal prykladnoi ekonomiky Ukrainian Journal of Applied Economics, 2 (1), 106—121 [in Ukrainian].

Tanaka, Y. (2015). A Short Derivation of the Kuhn-Tucker Conditions. Open Journal of Optimization, 4, 9—14.

Sumin, M. I. (2012). On the Stable Sequential Kuhn-Tucker Theorem and Its Applications. Applied Mathematics, 3, 82—88.

Zhu, Sh. (2017). The Corporate Financial Forecasting Based on Least Squares Support Vector Machines Methods. Technology and Investment, 8, 30—37.


GOST Style Citations


Сайт Державної служби статистики України [Електронний ресурс]. — Режим доступу : http://www.ukrstat.gov.ua.

Письменна Т. В. Теоретичні основи управління фінансовими ризиками підприємства / Т. В. Письменна // Економічні науки. — 2015. — № 28. — С. 100—106.

Полякова О. Ю. Основні засади формування комплексу моделей управління фінансовими ризиками підприємства / О. Ю. Полякова, Л. А. Гольтяєва // Бізнес-Інформ. — 2013. — № 6. — С. 106—110.

Al-Kassar T. A. Financial performance evaluation and bankruptcy prediction (failure) / T. A. Al-Kassar, J. S. Soileau // Arab Economic and Business Journal. — 2014. — № 9 (2). — Р. 147—155.

Fang F. A Study of Financial Risks of Listed Manufacturing Companies in China / F. Fang // Journal of Financial Risk Management. — 2016. — Vol. 5. — Р. 49—53.

Monti N. E. Statistical Analysis to Predict Financial Distress / N. E. Monti, R. M. Garcia // Journal of Service Science and Management. — 2010. — Vol. 3. — Р. 53—61.

Wang X. Theoretical Analysis of Financial Portfolio Model / X. Wang // iBusiness. — 2013. — Vol. 5. — Р. 12—19.

Кузенко Т. Б. Методичні підходи до управління фінансовим потенціалом підприємства / Т. Б. Кузенко, Н. В. Сабліна // Актуальні проблеми економіки. — 2015. — № 4 (166). — С. 123—131.

Лелюк С. В. Методичний підхід до організації моніторингу фінансової безпеки підприємств Харківського регіону / С. В. Лелюк // Науковий вісник Буковинського державного фінансово-економічного університету. — 2014. — Вип. 26. — С. 234—241.

Ситник Й. С. Метод рейтингового оцінювання результативності інтелектуалізації систем менеджменту / Й. С. Ситник // Український журнал прикладної економіки. — 2017. — Т. 2. — Вип. 1. — С. 106—121.

Tanaka Y. A Short Derivation of the Kuhn-Tucker Conditions / Y. Tanaka // Open Journal of Optimization. — 2015. — Vol. 4. — Р. 9—14.

Sumin M. I. On the Stable Sequential Kuhn-Tucker Theorem and Its Applications / M. I. Sumin // Applied Mathematics. — 2012. — Vol. 3. — Р. 82—88.

Zhu Sh. The Corporate Financial Forecasting Based on Least Squares Support Vector Machines Methods / Sh. Zhu // Technology and Investment. — 2017. — Vol. 8. — Р. 30—37.





Copyright (c) 2018 Yu. E. Kholodna, S. A. Pustovhar, N. L. Morozova, I. V. Pasechnik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2306-4994, ISSN (on-line) 2310-8770